LES SUITES NUMERIQUES : LE CORRIGE

EXERCICE 1 Les limites de suites par le terme dominant.
Dans chacun des cas, déterminer les limites des suites ( u, ) en utilisant la méthode du terme

dominant.
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EXERCICE 2 Les limites de suites par un théoreme de comparaison.
n+1

e On considere la suite ( u,, ) définie par : v, = ———
() P 2n + sin(n)

1
1. Démontrer que pour tout n > 1 on a 5 < Up

VneN,ona:1<ndoncona:2<2ndonc0<1<2n—1
Par ailleurs —1 < sin(n) < 2 donc 2n — 1 < 2n +sin(n) < 2n + 2

donc 0 <2n — 1< 2n+sin(n) < 2(n+1)
1 n+1

donc 5 < 3 et () en divisant par 2 et par 2n + sin(n)
1
2. Démontrer qu’a partir d'un certain rang on a u, < 3 + —
n
n+1 . , . . .
On a U, < 5 car en minorant le dénominateur, on majore la fraction
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A partir du rang 3, on a : U, =

3. Justifier que : lim w, = -
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D’apres le théoreme des Gendarmes puisque
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On peut affirmer que (U,,) converge vers 3

3n—1
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1. Montrer que pour tout n € N ona, -1 <wu, <3

ee On considere la suite ( u, ) définie par : u, =

-n—1 3n—1+4
< < ————
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Pour tout n € N on a, —n < 0 < 3n donc
donc —1 < wu, <3

2. Que peut-on en déduire ?

Que la suite U est bornée, minorée par —1 et majorée par 3

3. Etudier le sens de variation de Uy
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donc la suite U est strictement croissante.

4. Démontrer que pour n suffisamment grand on a : u, > 2,999

On résout I'équation T > 2,999
C’est a dire 3n — 1 > 2,999n + 2,999 puis 0,001n > 3,999 donc n > 3999
A partir du terme de rang 4000, on aura U, > 2,999

5. Que peut-on en conjecturer ?
La suite est croissante et majorée par 3, elle converge vers un réel L vérifiant L < 3. On
conjecture que la suite converge en fait vers 3.

EXERCICE 3 Les limites de suites par le théoreme des gendarmes. Pour chacune des suites

déterminer par la théoreme des gendarmes leurs limites.
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EXERCICE 4 Etude d’une suite. Soit S, la somme des nombres entiers de 1 & n tel que :

Sp=1+4+2+3+ - +n
Soit C, la somme des cubes des nombres entiers de 1 a n tel que :
Co=1+2+3+...4+n°

1. Calculer S, et C), lorsque n = 1,2, 3,4,5. Que pouvons-nous conjecturer ?



n S, C,
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2. Démontrer par récurrence que :
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wn>1.0, =Pt
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0 Soit H, la proposition ”C,, = w”
12 x 22

[0 Pourn=1,ona:C;=1c¢et

[J Soit n un entier naturel non nul pour lequel H, est vraie
n?(n+ 1)
4

= 1 donc H; est vraie.

pour cet entier n, on a : C,, =

or Cpy1=Cy+ (n+1)>°
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donc H, i est vraie.
[0 H; est vraie et, pour tout n € N*, si H, est vraie alors H,,, aussi
donc pour tout n € IN*, H, est vraie
n*(n + 1)

C’est a dire pour tout n € N, on a: C, = 1

EXERCICE 5 Etude d’une suite. On considere la suite (uy,) définie par uy = 5 et, pour tout entier

4
n, 3Upy1 = U, + 3
1. Calculer uy et us. uy = —ug + = = 3 puis uy = 1u1 +é = z ~ 2,33
3 3 3 3 3

2. Démontrer que, pour tout entier n, u,, > 2.
0 Soit H, la proposition "u, > 2”
[J Pour n =0, on a: uy =5 donc Hj est vraie.
[0 Soit n un entier naturel pour lequel H,, est vraie
pour cet entier n, on a : u, = 2

2
donc éu” > —

; 3
puis §Un +4 >

QW =~

2

3+
c’est a dire u, 11 = 2
donc H,y; est vraie.

[J H, est vraie et, pour tout n € IN, si H,, est vraie alors H, . aussi

donc pour tout n € N, H,, est vraie

C’est a dire pour tout n € IN, on a : u,, > 2
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. Montrer que ( u, ) est une suite décroissante.
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VneN,ona: g —uy=—=t,+==—=(u, —2)
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or u, = 2 donc u, —2 >0 et —3 < 0 donc uy11 — uy, < 0 donce u,1 < Uy
la suite est donc décroissante.

. Montrer que la suite ( u, ) est convergente et déterminer sa limite.
Puisque la suite est décroissante et minorée par 2,
elle converge vers une valeur L qui vérifie L > 2
1
D’apres le théoreme des suites monotones bornées, L vérifie L = §L + 3
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2 4
Cest adire =L =—donc L == x = =2
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. On pose pour tout entier n,v, = u, — 2.

Montrer que ( v, ) est une suite géométrique.
En déduire I'expression de v,, en fonction de n.
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donc la suite ( v, ) es géométrique de raison ¢ = 3 Par ailleurs vg = ug —2=5—-2=3
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. Soit les deux suites :
Sn: Vi Tn—Zuk
k=0 k=0

Déterminer 'expression de S, et de T;, en fonction de n.

s . PSP . : 1
D’apres le cours, puisque v est une suite géométrique de premier terme 3 et de raison 3

11— 9 1
c S =3x — 3" 2w (1
on a 17% 2 3n+1

n n 9 1
1= w= 2t u=2x o)+ 5 x (1o 51
k=0

k=0
. Déterminer les limites des deux suites ci-dessus.
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